Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 310
Filtrar
1.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1361-1368, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621984

RESUMO

This study aims to explore the pathogenesis of myocardial ischaemia reperfusion injury(MIRI) based on oxidative stress-mediated programmed cell death and the mechanism and targets of Chaihu Sanshen Capsules in treating MIRI via the protein kinase Cß(PKCßⅡ)/NADPH oxidase 2(NOX2)/reactive oxygen species(ROS) signaling pathway. The rat model of MIRI was established by the ligation of the left anterior descending branch. Rats were randomized into 6 groups: sham group, model group, clinically equivalent-, high-dose Chaihu Sanshen Capsules groups, N-acetylcysteine group, and CGP53353 group. After drug administration for 7 consecutive days, the area of myocardial infarction in each group was measured. The pathological morphology of the myocardial tissue was observed by hematoxylin-eosin(HE) staining. The apoptosis in the myocardial tissue was observed by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling(TUNEL). Enzyme-linked immunosorbent assay(ELISA) was employed to measure the le-vels of indicators of myocardial injury and oxidative stress. The level of ROS was detected by flow cytometry. The protein and mRNA levels of the related proteins in the myocardial tissue were determined by Western blot and real-time quantitative PCR(RT-qPCR), respectively. Compared with the sham group, the model group showed obvious myocardial infarction, myocardial structural disorders, interstitial edema and hemorrhage, presence of a large number of vacuoles, elevated levels of myocardial injury markers, myocardial apoptosis, ROS, and malondialdehyde(MDA), lowered superoxide dismutase(SOD) level, and up-regulated protein and mRNA le-vels of PKCßⅡ, NOX2, cysteinyl aspartate specific proteinase-3(caspase-3), and acyl-CoA synthetase long-chain family member 4(ACSL4) in the myocardial tissue. Compared with the model group, Chaihu Sanshen Capsules reduced the area of myocardial infarction, alleviated the pathological changes in the myocardial tissue, lowered the levels of myocardial injury and oxidative stress indicators and apoptosis, and down-regulated the mRNA and protein levels of PKCßⅡ, NOX2, caspase-3, and ACSL4 in the myocardial tissue. Chaihu Sanshen Capsules can inhibit oxidative stress and programmed cell death(apoptosis, ferroptosis) by regulating the PKCßⅡ/NOX2/ROS signaling pathway, thus mitigating myocardial ischemia reperfusion injury.


Assuntos
Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Traumatismo por Reperfusão , Ratos , Animais , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/genética , Espécies Reativas de Oxigênio , Ratos Sprague-Dawley , Caspase 3/metabolismo , Transdução de Sinais , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/genética , RNA Mensageiro , Apoptose
2.
Per Med ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38501284

RESUMO

Aim: Steroid-induced osteonecrosis of the femoral head (SONFH) is a severe complication following glucocorticoid therapy. This study aimed to identify the differential mRNA expression and investigate the molecular mechanisms of SONFH. Materials & methods: RNA sequencing was performed in eight SONFH patients, five non-SONFH patients and five healthy individuals. Results: A total of 1555, 3997 and 5276 differentially expressed mRNAs existed between the following combinations: SONFH versus non-SONFH, SONFH versus healthy subjects and non-SONFH versus healthy subjects. Increased ISM1 expression might contribute to a high risk of SONFH through antiangiogenesis. Decreased FOLR3 expression might affect the metabolism of homocysteine, leading to avascular necrosis of the femoral head. KCNJ2, which plays a pivotal role in regulating bone development, was also deregulated. Conclusion: ISM1, FOLR3 and KCNJ2 might be related to the occurrence of SONFH.

3.
Chaos ; 34(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38502966

RESUMO

In this paper, we focus on the localized rational waves of the variable-coefficient Heisenberg spin chain equation, which models the local magnetization in ferromagnet with time-dependent inhomogeneous bilinear interaction and spin-transfer torque. First, we establish the iterative generalized (m,N-m)-fold Darboux transformation of the Heisenberg spin chain equation. Then, the novel localized rational solutions (LRSs), rogue waves (RWs), periodic waves, and hybrid wave structures on the periodic, zero, and nonzero constant backgrounds with the time-dependent coefficients α(t) and ß(t) are obtained explicitly. Additionally, we provide the trajectory curves of magnetization and the variation of the magnetization direction for the obtained nonlinear waves at different times. These phenomena imply that the LRSs and RWs play the crucial roles in changing the circular motion of the magnetization. Finally, we also numerically simulate the wave propagations of some localized semi-rational solutions and RWs.

4.
Cancer Med ; 13(5): e7015, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38491808

RESUMO

BACKGROUND: Gastric cardia adenocarcinoma (GCA) is classified as Siewert type II adenocarcinoma at the esophagogastric junction in Western countries. The majority of GCA patients do not exhibit early warning symptoms, leading to over 90% of diagnoses at an advanced stage, resulting in a grim prognosis, with less than a 20% 5-year survival rate. METHOD: Metabolic features of 276 GCA and 588 healthy controls were characterized through a widely-targeted metabolomics by UPLC-MS/MS analysis. This study encompasses a joint pathway analysis utilizing identified metabolites, survival analysis in both early and advanced stages, as well as high and negative and low expression of HER2 immunohistochemistry staining. Machine learning techniques and Cox regression models were employed to construct a diagnostic panel. RESULTS: A total of 25 differential metabolites were consistently identified in both discovery and validation sets based on criteria of p < 0.05, (VIP) ≥ 1, and FC ≥ 2 or FC ≤ 0.5. Early-stage GCA patients exhibited a more favorable prognosis compared to those in advanced stages. HER2 overexpression was associated with a more positive outcome compared to the negative and low expression groups. Metabolite panel demonstrated a robust diagnostic performance with AUC of 0.869 in discovery set and 0.900 in validation set. CONCLUSIONS: A total of 25 common and stable differential metabolites may hold promise as liquid non-invasive indicators for GCA diagnosis. HER2 may function as a tumor suppressor gene in GCA, as its overexpression is associated with improved survival. The downregulation of bile acid metabolism in GCA may offer valuable theoretical insights and innovative approaches for precision-targeted treatments in GCA patients.


Assuntos
Adenocarcinoma , Neoplasias Gástricas , Humanos , Cárdia/patologia , Cromatografia Líquida , Espectrometria de Massas em Tandem , Neoplasias Gástricas/patologia , Adenocarcinoma/patologia , Biomarcadores
5.
J Psychiatry Neurosci ; 49(1): E23-E34, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38302136

RESUMO

BACKGROUND: Depression is a prevalent nonmotor symptom in Parkinson disease and can greatly reduce the quality of life for patients; the dopamine receptors found in glutamatergic pyramidal cells in the medial prefrontal cortex (mPFC) play a role in regulating local field activity, which in turn affects behavioural and mood disorders. Given research showing that glial cell-derived neurotrophic factor (GDNF) may have an antidepressant effect, we sought to evaluate the impact of exogenous GDNF on depression-like behaviour in mouse models of Parkinson disease. METHODS: We used an established subacute model of Parkinson disease in mice involving intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), followed by brain stereotaxic injection of GDNF into the mPFC region. Subsequently, we assessed depression-like behaviour using the sucrose preference test, forced swimming test and tail suspension test, while also evaluating protein expression in the mPFC. RESULTS: We included 60 mice, divided into 3 groups, including a control group (saline injection), an MPTP plus saline injection group and an MPTP plus GDNF injection group. We found that exogenous GDNF injection into the mPFC led to an increase in dopamine receptor D1 (DRD1) protein levels. We also observed that activating the protein kinase A pathway through DRD1 produced a prolonged antidepressant response. Under GDNF stimulation, the expression of dopamine receptor D2 (DRD2) remained constant, suggesting that the DRD2 signal was ineffective in alleviating depression-like symptoms. Moreover, our investigation involved Golgi staining and Western blot techniques, which found enhanced synaptic plasticity, including increased dendritic branches, dendritic spines and retrograde protection after GDNF treatment in Parkinson disease models. LIMITATIONS: A subtle motor phenotype became evident only toward the conclusion of the behavioural testing period. The study exclusively involved male mice, and no separate control group receiving only GDNF treatment was included in the experimental design. CONCLUSION: Our findings support a positive effect of exogenous GDNF on synaptic plasticity, mediated by DRD1 signalling in the mPFC, which could facilitate depression remission in Parkinson disease.


Assuntos
Doença de Parkinson , Humanos , Masculino , Camundongos , Animais , Doença de Parkinson/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Depressão/tratamento farmacológico , Qualidade de Vida , Córtex Pré-Frontal/metabolismo , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Modelos Animais de Doenças
6.
Int J Biol Macromol ; 262(Pt 2): 130152, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38365143

RESUMO

Supplementing probiotics or indigestible carbohydrates is a usual strategy to prevent or revert unhealthy states of the gut by reshaping gut microbiota. One criterion that probiotics are efficacious is the capacity to survive in the gastrointestinal tract. Biofilm is the common growth mode of microorganisms with high tolerances toward harsh environments. Suitable scaffolds are crucial for successful biofilm culture and large-scale production of biofilm-phenotype probiotics. However, the role of scaffolds containing indigestible carbohydrates in biofilm formation has not been studied. In this study, porous zein/cellulose composite scaffolds provided nitrogen sources and carbon sources simultaneously at the solid/liquid interfaces, being beneficial to the biofilm formation of Lactobacillus reuteri. The biofilms showed 2.1-17.4 times higher tolerances in different gastrointestinal conditions. In human fecal fermentation, the biofilms combined with the zein/cellulose composite scaffolds act as the "synbiotics" positively modulating the gut microbiota and the short-chain fatty acids (SCFAs), where biofilms provide probiotics and scaffolds provide prebiotics. The "synbiotics" show a more positive regulation ability than planktonic L. reuteri, presenting potential applications in gut health interventions. These results provide an understanding of the synergistic effects of biofilm-phenotype probiotics and indigestible carbohydrates contained in the "synbiotics" in gut microbiota modulation.


Assuntos
Microbioma Gastrointestinal , Limosilactobacillus reuteri , Probióticos , Simbióticos , Zeína , Humanos , Celulose , Porosidade , Prebióticos , Carboidratos , Biofilmes
7.
Sensors (Basel) ; 24(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38339522

RESUMO

An inertial sensor is a crucial payload in China's Taiji program for space gravitational wave detection. The performance of the capacitive displacement sensing circuit in the low-frequency band (0.1 mHz to 1 Hz) is extremely important because it directly determines the sensitivity of the space gravitational wave detection missions. Therefore, significant, yet challenging, tasks include decreasing the low-frequency noise in capacitive displacement sensing circuits and improving the capacitive sensing resolution. This study analyzes the noise characteristics of the pre-amplifier circuit within the capacitive sensing circuit, achieves precise tuning of the transformer bridge, and examines how transformer parameters affect noise. In addition, this study introduces a method using a discrete JFET to reduce the operational amplifier current noise and analyzes how feedback resistance and capacitance in TIA circuits affect the overall circuit noise. The proportional relationship between different transformer noises and TIA noise before and after optimization was analyzed and experimentally verified. Finally, an optimized TIA circuit and a superior transformer were utilized to achieve an increase in the capacitive sensing resolution from 1.095 aF/rtHz @ 10 mHz to 0.84 aF/rtHz @ 10 mHz, while improving the performance by 23%. These findings provide valuable insights into further decreasing circuit noise and increasing the capacitive sensing resolution.

8.
Bioorg Chem ; 143: 107020, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176374

RESUMO

Abnormally high levels of copper in tumors stimulate malignant proliferation and migration of cancer cells, which proposes a formidable challenge for the thorough therapy of malignant tumors. In this work, we developed a reliable, mitochondria-targeted near-infrared aggregation-induced emission fluorescent probe, TTQ-Th, whose thiourea moiety specifically could recognize mitochondria even both upon loss of mitochondrial membrane potential or in fixated cells, and can capture copper overexpressed by tumor cells, leading to severe copper deficiency. In parallel, TTQ-Th can generate sufficient reactive oxygen species (ROS) upon photoexcitation, while copper deficiency inhibits expression of related copper-based enzymes, resulting in a decline in ATP production. Such energy deficiency, combined with reduced MMP and elevated oxidative stress can lead to critical cell oncosis. Both in vitro and intracellular experiments can illustrate that the elevated ROS has remarkable damage to tumor cells and contributes to the elimination of the primary tumor, while copper deficiency further hinder tumor cell migration and induces G0/G1 cell cycle arrest in a dose-dependent manner, which is an efficacious strategy for the treatment of malignant tumors.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Cobre/farmacologia , Cobre/metabolismo , Fotoquimioterapia/métodos , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias/metabolismo , Neoplasias/tratamento farmacológico
9.
CNS Neurosci Ther ; 30(3): e14461, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37718594

RESUMO

AIM: Aberrations in brain connections are implicated in the pathogenesis of Parkinson's disease (PD). We previously demonstrated that Glial cell-derived neurotrophic factor (GDNF) reduction is associated with cognition decline. Nonetheless, it is elusive if the pattern of brain topological connectivity differed across PD with divergent serum GDNF levels, and the accompanying profile of cognitive deficits has yet to be determined. METHODS: We collected data on the participants' cognition, demographics, and serum GDNF levels. Participants underwent 3.0T magnetic resonance imaging, and we assessed the degree centrality, brain network topology, and cortical thickness of the healthy control (HC) (n = 25), PD-high-GDNF (n = 19), and PD-low-GDNF (n = 19) groups using graph-theoretic measures of resting-state functional MRI to reveal how much brain connectivity varies and its clinical correlates, as well as to determine factors predicting the cognitive status in PD. RESULTS: The results show different network properties between groups. Degree centrality abnormalities were found in the right inferior frontal gyrus and right parietal lobe postcentral gyrus, linked with cognition scores. The two aberrant clusters serve as a potentially powerful signal for determining whether a patient has PD and the patient's cognition level after integrating with GDNF, duration, and dopamine dosage. Moreover, we found a significant positive relationship between the thickness of the left caudal middle frontal lobe and a plethora of cognitive domains. Further discriminant analysis revealed that the cortical thickness of this region could distinguish PD patients from healthy controls. The mental state evaluation will also be more precise when paired with GDNF and duration. CONCLUSION: Our findings reveal that the topological features of brain networks and cortical thickness are altered in PD patients with cognitive deficits. The above change, accompanied by the serum GDNF, may have merit as a diagnosis marker for PD and, arguably, cognition status.

10.
Neural Regen Res ; 19(8): 1759-1767, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38103242

RESUMO

Parkinson's disease can affect not only motor functions but also cognitive abilities, leading to cognitive impairment. One common issue in Parkinson's disease with cognitive dysfunction is the difficulty in executive functioning. Executive functions help us plan, organize, and control our actions based on our goals. The brain area responsible for executive functions is called the prefrontal cortex. It acts as the command center for the brain, especially when it comes to regulating executive functions. The role of the prefrontal cortex in cognitive processes is influenced by a chemical messenger called dopamine. However, little is known about how dopamine affects the cognitive functions of patients with Parkinson's disease. In this article, the authors review the latest research on this topic. They start by looking at how the dopaminergic system, is altered in Parkinson's disease with executive dysfunction. Then, they explore how these changes in dopamine impact the synaptic structure, electrical activity, and connection components of the prefrontal cortex. The authors also summarize the relationship between Parkinson's disease and dopamine-related cognitive issues. This information may offer valuable insights and directions for further research and improvement in the clinical treatment of cognitive impairment in Parkinson's disease.

11.
Talanta ; 270: 125568, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38150966

RESUMO

In most biophysiological processes, sulfur dioxide (SO2) is an important intracellular signaling molecule that plays an important role. The change of SO2 in cells are closely related to various diseases such as neurological disorders and lung cancer, so it is necessary to develop fluorescent probes with the ability to accurately detect SO2 during physiological processes. In this work, we designed and synthesized a multifunctional fluorescent probe TIS. TIS has excellent properties such as near-infrared emission, large stokes shift, excellent SO2 detection capabilities, low detection limit, high specificity and visualization of color change before and after reaction. Simultaneously, TIS has low cytotoxicity, good biocompatibility, clear cell imaging capability and mitochondrial targeting ability. In addition, the ability of TIS to be applied to different material surfaces for latent fingerprint fluorescence imaging was also explored. TIS provides an excellent method for the accurate detection of SO2 derivatives and shows great potential applications in near-infrared cellular imaging and latent fingerprint fluorescence imaging.


Assuntos
Corantes Fluorescentes , Dióxido de Enxofre , Humanos , Corantes Fluorescentes/metabolismo , Dióxido de Enxofre/metabolismo , Células HeLa , Mitocôndrias/metabolismo , Imagem Óptica
12.
Sensors (Basel) ; 23(22)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38005532

RESUMO

In the space gravitational wave detection mission, inertial sensors play the role of providing an inertial reference for the laser interferometric measurement system. Among them, the capacitance sensor serves as the core key technology of the inertial sensor, used to measure the relative position of the test mass (TM) in the electrode cage. The capacitance sensor utilizes synchronous demodulation technology to extract signals from the AC induction signal. When the phase of the demodulation switch signal is aligned, the synchronous demodulator can most effectively filter out noise, thus directly influencing the performance of the capacitance sensor. However, since the TM is in a suspended state, the information read by the capacitance sensor is dynamic, which increases the difficulty of demodulation phase alignment. In light of this, a method is proposed for achieving the phase alignment of the demodulation switch signal in a dynamic environment. This is accomplished by adjusting the phase of the demodulation switch signal, and subsequently computing the phase difference between the AC induction signal and the demodulation switch signal. At the same time, a measurement and evaluation method for phase deviation is also proposed. Ultimately, an automatic phase alignment system for the demodulation switch signal in dynamic environments is successfully implemented on an FPGA platform, and tests are conducted on a hexapod PI console platform to simulate dynamic environments. The experimental results demonstrate that the system accurately achieves phase alignment in the static environment, with a phase deviation of 0.1394 rad. In the simulated dynamic environment, the phase deviation is 0.1395 rad.

13.
Biomedicines ; 11(10)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37893208

RESUMO

Repairing cartilage defects represents a significant clinical challenge. While adipose-derived stem cell (ADSC)-based strategies hold promise for cartilage regeneration, their inherent chondrogenic potential is limited. Extracellular vesicles (EVs) derived from chondrocytes (CC-EVs) have shown potential in enhancing chondrogenesis, but their role in promoting chondrogenic differentiation of ADSCs remains poorly understood. Moreover, the clinical application of EVs faces limitations due to insufficient quantities for in vivo use, necessitating the development of effective methods for extracting significant amounts of CC-EVs. Our previous study demonstrated that low-intensity ultrasound (LIUS) stimulation enhances EV secretion from mesenchymal stem cells. Here, we identified a specific LIUS parameter for chondrocytes that increased EV secretion by 16-fold. CC-EVs were found to enhance cell activity, proliferation, migration, and 21-day chondrogenic differentiation of ADSCs in vitro, while EVs secreted by chondrocytes following LIUS stimulation (US-CC-EVs) exhibited superior efficacy. miRNA-seq revealed that US-CC-EVs were enriched in cartilage-regeneration-related miRNAs, contributing to chondrogenesis in various biological processes. In conclusion, we found that CC-EVs can enhance the chondrogenesis of ADSCs in vitro. In addition, our study introduces ultrasound-driven healing as an innovative method to enhance the quantity and quality of CC-EVs, meeting clinical demand and addressing the limited chondrogenic potential of ADSCs. The ultrasound-driven healing unleashes the potential of CC-EVs for chondrogenesis possibly through the enrichment of cartilage-regeneration-associated miRNAs in EVs, suggesting their potential role in cartilage reconstruction. These findings hold promise for advancing cartilage regeneration strategies and may pave the way for novel therapeutic interventions in regenerative medicine.

14.
Nat Commun ; 14(1): 5894, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37736772

RESUMO

Neutrophils have a pathogenic function in inflammation via releasing pro-inflammatory mediators or neutrophil extracellular traps (NETs). However, their heterogeneity and pro-inflammatory mechanisms remain unclear. Here, we demonstrate that CXCR4hi neutrophils accumulate in the blood and inflamed skin in human psoriasis, and correlate with disease severity. Compared to CXCR4lo neutrophils, CXCR4hi neutrophils have enhanced NETs formation, phagocytic function, neutrophil degranulation, and overexpression of pro-inflammatory cytokines and chemokines in vitro. This is accompanied by a metabolic shift in CXCR4hi neutrophils toward glycolysis and lactate release, thereby promoting vascular permeability and remodeling. CXCR4 expression in neutrophils is dependent on CREB1, a transcription factor activated by TNF and CXCL12, and regulated by de novo synthesis. In vivo, CXCR4hi neutrophil infiltration amplifies skin inflammation, whereas blockade of CXCR4hi neutrophils through CXCR4 or CXCL12 inhibition leads to suppression of immune responses. In this work, our study identifies CREB1 as a critical regulator of CXCR4hi neutrophil development and characterizes the contribution of CXCR4hi neutrophils to vascular remodeling and inflammatory responses in skin.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Dermatite , Psoríase , Animais , Humanos , Camundongos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Modelos Animais de Doenças , Inflamação , Neutrófilos , Psoríase/genética , Receptores CXCR4/genética , Pele
15.
Dig Dis Sci ; 68(11): 4186-4195, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37679574

RESUMO

BACKGROUND: Hepatic stellate cell hyperactivation is a central link in liver fibrosis development, transforming growth factor ß1 (TGF-ß1) is a key activator of HSCs. AIMS: This study investigated whether anlotinib attenuates CCl4 induced liver fibrosis in mice and explored its antifibrotic mechanism. METHODS: We used the human hepatic stellate cell line LX-2 for in vitro assays and used TGF-ß1 to induce hepatic fibrosis in LX-2 cells. We analyzed cytotoxicity using a cell-counting kit-8 and transwell chambers to detect the migratory ability of LX-2 cells. Western blotting was used to detect the protein levels of collagen type I, α-smooth muscle actin, and p-Smad3. In addition, mice with CCl4-induced hepatic fibrosis were used as in vivo models. Histopathological examination was performed using H&E staining, Masson's trichrome staining, and immunohistochemistry. RESULTS: Anlotinib significantly reversed TGF-ß1-induced protein levels of Col I, α-SMA and p-Smad3 and inhibits migratory and proliferative abilities in vitro using LX-2 cells. CCl4 cause F4 grade (Ishak) hepatic fibrosis, liver inflammatory scores ranged from 12 to 14 (Ishak), a mean ALT measurement of 130 U/L and a mean measurement AST value of 119 U/L in mice. However, the CCl4-induced changes were markedly attenuated by anlotinib treatment, which returned to F2 grade (Ishak) hepatic fibrosis, liver inflammatory scores ranged from 4 to 6 (Ishak), a mean ALT measurement of 40 U/L and a mean measurement AST value of 56 U/L in mice. CONCLUSIONS: Our results suggest that anlotinib-mediated suppression of liver fibrosis is related to the inhibition of TGF-ß1 signaling pathway. Hepatic stellate cell hyper activation is a central link in liver fibrosis development, transforming growth factor ß1 is a key activator of HSCs. Anlotinib is a multi-targeted tyrosine kinase inhibitor that has similar targets to nintedanib, a clinically used anti-pulmonary fibrosis drug. Our study demonstrates an FDA-approved drug-anlotinib-that could prevent liver fibrosis and inflammation. Experiments in cell cultures and mice show that anlotinib can inhibit the activation of hepatic stellate cells by down-regulating the TGFß1/smad3 pathway, thereby reversing liver fibrosis. In animal experiments, anlotinib showed protective effects on the CCl4-induced liver damage, including ameliorating liver inflammation, reversing liver fibrosis and reducing liver enzymes. This is a very good signal, anlotinib may be useful for halting or reversing the progression of liver fibrosis and could be employed in the development of novel therapeutic drugs for the management of chronic liver diseases.

16.
Front Oncol ; 13: 1190457, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37538122

RESUMO

The aim of this work is to analyze the clinicopathological characteristics and prognostic factors of patients with nuclear pedigree of esophageal cancer. The clinicopathological data and follow-up information of 3,260 patients from different nuclear pedigree of esophageal cancer who underwent radical resection of esophageal cancer were collected, and the clinicopathological characteristics and prognostic factors of the patients were analyzed. The male to female ratio of 3,260 patients with esophageal cancer was 1.7:1. The diagnosis age was ranged from 32 to 85 (60.2 ± 8.1) years old. About 53.8% of the patients were ≥ 60 years old; About 88.8% of the patients came from the high incidence area of esophageal cancer; About 82.5% of the tumors were located in the middle and lower segments of esophagus; Poor, moderate and well differentiation accounted for 26.6%, 61.9% and 11.5% respectively; The surgical margin accounted for 94.3%; 47.6% of the tumors were shorter than 4 cm in length; Clinicopathological TNM stage (0+I) accounted for 15.2%, and stage II, III and IV accounted for 54.5%, 29.9% and 0.4%, respectively. Cox analysis showed that male, diagnosed age ≥ 60 years, tumor located in neck and upper esophageal segments, poor differentiation, tumor length ≥ 4 cm, and advanced TNM were independent risk factors for the prognosis of patients in nuclear pedigree with esophageal cancer. Gender, diagnosis age, tumor location, degree of differentiation, tumor length and TNM stage are the influencing factors for the prognosis of patients with nuclear pedigree of esophageal cancer, which will provide important data for the future study of esophageal cancer family aggregation.

17.
J Autism Dev Disord ; 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37642873

RESUMO

PURPOSE: The heterogeneity of autism is well documented, but few studies have studied the heterogeneity of gesture production ability in autistic children. The present study aimed to identify subgroups of autistic children who displayed heterogeneous gesture production abilities and explore the underlying factors, including autism characteristics, intellectual ability, and language ability, that were associated with the heterogeneity. METHODS: A total of 65 Chinese autistic children (mean age = 5;3) participated. Their autism characteristics and intellectual ability were assessed by standardized measurements. Language output and gesture production were captured from a parent-child interaction task. RESULTS: We conducted a hierarchical cluster analysis and identified four distinct clusters. Cluster 1 and Cluster 2 both had low gesture production whereas Cluster 3 and Cluster 4 had high gesture production. Both Clusters 1 and 2 had relatively strong autism characteristics, in comparison to Clusters 3 and 4. CONCLUSIONS: Our findings revealed that children with stronger autism characteristics may gesture less often than those with weaker characteristics. However, the relationship between language ability and intellectual ability and gesture production was not clear. These findings shed light on the directions of intervention on gesture production for autistic children, especially those with stronger autism characteristics.

18.
World J Gastrointest Surg ; 15(6): 1169-1177, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37405107

RESUMO

BACKGROUND: Radical gastrectomy (RG) is commonly used in the treatment of patients with gastric cancer (GC), but this procedure may lead to stress responses, postoperative cognitive dysfunction, and blood coagulation abnormalities in patients. AIM: To investigate the influences of dexmedetomidine (DEX) on stress responses and postoperative cognitive and coagulation functions in patients undergoing RG under general anesthesia (GA). METHODS: One hundred and two patients undergoing RG for GC under GA from February 2020 to February 2022 were retrospectively reviewed. Of these, 50 patients had received conventional anesthesia intervention [control group (CG)] and 52 patients had received DEX in addition to routine anesthesia intervention [observation group (OG)]. Inflammatory factor (IFs; tumor necrosis factor-α, TNF-α; interleukin-6, IL-6), stress responses (cortisol, Cor; adrenocorticotropic hormone, ACTH), cognitive function (CF; Mini-Mental State Examination, MMSE), neurological function (neuron-specific enolase, NSE; S100 calcium-binding protein B, S100B), and coagulation function (prothrombin time, PT; thromboxane B2, TXB2; fibrinogen, FIB) were compared between the two groups before surgery (T0), as well as at 6 h (T1) and 24 h (T2) after surgery. RESULTS: Compared with T0, TNF-α, IL-6, Cor, ACTH, NSE, S100B, PT, TXB2, and FIB showed a significant increase in both groups at T1 and T2, but with even lower levels in OG vs CG. Both groups showed a significant reduction in the MMSE score at T1 and T2 compared with T0, but the MMSE score was notably higher in OG compared with CG. CONCLUSION: In addition to a potent inhibitory effect on postoperative IFs and stress responses in GC patients undergoing RG under GA, DEX may also alleviate the coagulation dysfunction and improve the postoperative CF of these patients.

19.
J Craniofac Surg ; 34(6): e617-e619, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37485963

RESUMO

The nasal bone fracture is the most common type of facial bone fracture. Closed reduction with metal reduction instrument is commonly conducted for the treatment of a type II nasal bone fracture. The authors defined a new catheter dilation technique and used it in patients with type II depressed nasal bone fractures. Preoperative and postoperative nasal appearance and radiologic examination of the patients were compared. There was a statistically significant improvement in the nasal appearance of all patients. No recurrence or dorsal irregularity has been observed. This new, easily applicable catheter dilation method of closed reduction may be a simple and less invasive solution to treat type II nasal bone fractures.


Assuntos
Fraturas Múltiplas , Doenças Nasais , Fraturas Cranianas , Humanos , Osso Nasal/cirurgia , Fraturas Cranianas/cirurgia , Cateterismo , Cateteres
20.
Appl Microbiol Biotechnol ; 107(13): 4395-4408, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37266585

RESUMO

In vitro intestinal epithelium models have drawn great attention to investigating intestinal biology in recent years. However, the difficulty to maintain the normal physiological status of primary intestinal epithelium in vitro limits the applications. Here, we designed patterned electrospun polylactic acid (PLA) nanofibrous membranes with crypt-like topography and mimic ECM fibrous network to support crypt culture and construct in vitro intestinal epithelium models. The patterned electrospun PLA nanofibrous membranes modified with Matrigels at 0 °C showed high biocompatibility and promoted cell growth and proliferation. The constructed duodenum epithelium models and colon epithelium models on the patterned electrospun PLA nanofibrous membranes expressed the typical differentiation markers of intestinal epithelia and the gene expression levels were close to the original tissues, especially with the help of probiotics. The constructed intestinal epithelium models could be used to assess probiotic adhesion and colonization, which were verified to show significant differences with the Caco-2 cell models due to the different cell types. These findings provide new insights and a better understanding of the roles of biophysical, biochemical, and biological signals in the construction of in vitro intestinal epithelium models as well as the potential applications of these models in the study of host-gut microbes interactions. KEY POINTS: • Patterned electrospun scaffold has crypt-like topography and ECM nanofibrous network. • Matrigels at 0°C modify scaffolds more effectively than at 37°C. • Synergy of biomimic scaffold and probiotics makes in vitro model close to tissue.


Assuntos
Nanofibras , Tecidos Suporte , Humanos , Engenharia Tecidual , Células CACO-2 , Diferenciação Celular , Mucosa Intestinal/metabolismo , Poliésteres/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA